

Руководство по эксплуатации

Электродвигатели асинхронные взрывозащищенные ВА 80-280

P3-52468764-001-2022

Содержание

1. Приемка электродвигателя	3
2. Область применения и конструктивные особенности	3
3. Структура обозначения	5
4. Технические характеристики	5
5. Конструкция двигателя	6
б. Средства обеспечения взрывозащиты	10
7. Требования к монтажу электродвигателя	12
8. Подключение и монтаж электродвигателя	12
9. Техническое обслуживание электродвигателя	15
10. Возможные неисправности и методы устранения	21
11. Перечень критических отказов, приводящих к аварийным режимам работы	22
12. Транспортировка. Хранение электродвигателя	22
13. Гарантийные обязательства	23
Приложение 1. Радиальные и осевые нагрузки	25

Все работы по подключению, вводу в эксплуатацию, обслуживанию и ремонту должны выполняться квалифицированными специалистами с соблюдением установленных норм (ПУЭ, ПТЭЭП, СНиП, Инструкции по охране труда при эксплуатации электроустановок) и требований настоящего Руководства по эксплуатации и Паспорта электродвигателя.

Несоблюдение требований инструкции, доработка и разборка двигателей без согласования с изготовителем приводит к расторжению гарантии.

Изготовитель может вносить в электродвигатели конструктивные изменения не отраженные в настоящем Руководстве по эксплуатации и Паспорте электродвигателя.

1. Приемка электродвигателя

После извлечения двигателя из упаковки необходимо:

- проверить соответствие данных паспортной таблички двигателя паспорту и накладной;
- проверить двигатель на отсутствие повреждений во время транспортировки, погрузке/разгрузке;
- проверить вращение вала от руки.

В случае обнаружения любых повреждений, не соответствий, эксплуатация электродвигателя запрещается.

2. Область применения и конструктивные особенности

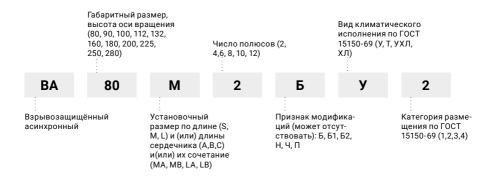
Руководство по эксплуатации предназначено для изучения устройства и условий безопасной эксплуатации двигателей серии ВА 80-280, во взрывоопасных зонах помещений и наружных установок, где могут образоваться взрывоопасные смеси газов и паров, отнесенных к категориям IIA, IIB, и группам T1, T2, T3, T4 по ГОСТ 31610.0 — 2014 (IEC 60079-0:2011).

Двигатели асинхронные трехфазные с короткозамкнутым ротором взрывозащищенные серии ВА 80-280, предназначены для привода механизмов внутренних и наружных установок взрывоопасных видов производств химической, газовой, нефтеперерабатывающей и других смежных отраслей промышленности, в которых возможно образование взрывоопасных паров и газовоздушных смесей, отнесенных к категориям IIA, IIB и группам Т1, Т2, Т3, Т4 ГОСТ 31610.0 — 2014 (IEC 60079-0:2011).

Область применения двигателей во взрывоопасных зонах в соответствии с главой 7.3 ПУЭ.

Двигатели рассчитаны для работы в продолжительном режиме S1 от трех

фазной питающей сети. Предназначены для работы от сети переменного тока с частотой 50Гц., напряжением от 220В. до 660В. Возможно исполнение с частотой 60Гц.


Двигатели по уровню взрывозащиты являются взрывобезопасными для категории взрывоопасных смесей IIA, IIB и имеют маркировку **1Ex d IIB T4 Gb** по ГОСТ 31610.0-2014 (IEC 60079-0:2011). Вид взрывозащиты — «взрывонепроницаемая оболочка» по ГОСТ IEC 60079-1.2011. Климатические факторы в соответствии с Таблицей 1.

Климатическое	Котогория	Рабочая те	мпература	Макс. значение
исполнение	Категория размещения			относительной величины влажности, %
у	1; 2	+40	-45	100 при 25 °C
У	3	+40	-45	98 при 25 °C
ухл	4	+35	+1	80 при 25 °C
Т	2	+50	-10	100 при 35 °C
хл, ухл	1,2	+40	-60	100 при 25 °C

Таблица 1

Двигатели предназначены для эксплуатации на высоте над уровнем моря не более 1000 м. При эксплуатации на высоте свыше 1000 м., нагрузка на двигатель должна быть снижена.

3. Структура обозначения

Модификации: Б – со встроенным датчиком температурной защиты обмотки, Б1 – со встроенными датчиками температурной защиты обмотки и подшипниковых узлов, Б2 – со встроенными датчиками температурной защиты обмотки и подогревом, Н – малошумного исполнения, Ч – с возможностью подключения частотного преобразователя и независимой вентиляции, П – повышенной точности по установочным размерам, с подготовкой под вибродиагностику, вход под бронированный кабель.

4. Технические характеристики

Параметры взрывозащиты электродвигателей соответствуют ГОСТ IEC 60079-1-2011.

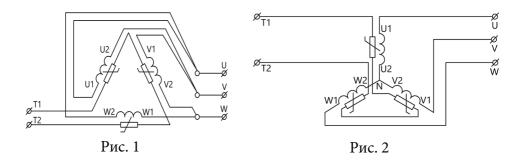
Основные технические данные двигателя (маркировка взрывозащиты, мощность - кВт., напряжение - В., частота - Гц., линейный ток - А., частота вращения - об/мин., коэффициент мощности - СОЅ ф, соединение фаз обмоток в треугольник, либо в звезду), указаны на заводской табличке, укрепленной на корпусе.

Конструктивное исполнение по способу монтажа ІМ по ГОСТ 2479-79.

Степень защиты двигателей от внешних воздействий IP54-IP65, степень защиты кожуха вентилятора со стороны входа воздуха IP20, со стороны выхода воздуха IP10, по ГОСТ 14254.

Допуски на установочные и присоединительные размеры соответствуют нормальной точности по ГОСТ 8592-79. Допуска на массы — не более +5%.

Средний ресурс двигателя до капитального ремонта 30000 ч. Наработка на отказ 23 000 ч. Средний срок службы до списания — 15 лет.


Условия хранения - законсервированные в закрытых помещениях или под навесом при температуре окружающего воздуха от -50°C до +50°C и относительной влажности 95% при +25°C.

5. Конструкция двигателя

Конструкция электродвигателя предствлена на рисунке 3.

Станина (22) - представляет собой литой из чугуна корпус, внутри которого крепится магнитопровод статора (20), собранный из листов электротехнической стали, в пазы которого уложена медная обмотка. Обмотка статора трехфазная, т.е. состоит из трех одинаковых частей - фаз. Каждая фаза состоит из нескольких катушек, содержащих определенное количество витков медного провода и определенным образом соединенных между собой. Изоляция статорной обмотки класса нагревостойкости не ниже F по ГОСТ 8865-93. Начала и концы обмоток выведены в клеммную коробку - БРНО (6).

Соединение обмоток в «треугольник» - рисунок 1, в «звезду» - рисунок 2.

В клеммной коробке выводов- БРНО (6) имеются три или шесть клемм (10) с маркировкой (U1, V1, W1, U2, V2, W2) для подключения двигателя к сети; для подключения цепей терморезисторов типа РТС, в коробке выводов для двигателей ВА 80-280, дополнительно имеются два вывода с маркировкой Т1 и Т2.

В качестве системы управления возможна установка устройства защиты (в комплект поставки не входит), которое отключает силовую цепь двигателя при изменении сопротивления цепи датчиков.

Температура срабатывания защиты при нагреве обмотки составляет +140 °C.

Ротор (21) представляет собой магнитопровод, собранный из листов электротехнической стали, в пазы которого залита алюминиевая обмотка. Образованные таким образом стержни обмотки замкнуты между собой двумя короткозамыкающими кольцами, расположенными на торцах ротора. Магнитопровод насаживается на стальной вал, на который напрессованы подшипники (18,24).

Ротор (21) устанавливается в статор (20) и крепится с помощью двух подшипниковых щитов (12,9). Щиты крепятся к станине болтами (15). Для предотвращения попадания внутрь электродвигателя воды, пыли и грязи, в подшипниковых щитах установлены сальники (14,25).

Щиты подшипниковые (9,11,12), крышки подшипниковые (8,17,19,23), кеммная коробка - БРНО (6) и детали кабельного ввода выполняются литыми из чугуна.

Пополнение и замена смазки в подшипниковые узлы (для подшипников открытого типа) осуществляется без разборки двигателя через тавотницы (масленки), для двигателей ВА 180-280.

При установке подшипников закрытого типа, пополнение смазки не предусмотрено. Количество смазки рассчитано на весь срок службы подшипника.

Конструкция электродвигателя предусматривает два заземляющих зажима, внутри клеммной коробки и на корпусе электродвигателя.

На корпусе двигателя имеется табличка (шильд) с номинальными параметрами двигателя.

Охлаждение двигателя осуществляется вентилятором (26). Вентилятор крепится на валу с помощью шпонки.

От механических повреждений вентилятор защищен кожухом (28), который крепится болтами к подшипниковому щиту (9).

Клеммная коробка - БРНО (6), расположена сверху. Подробное устройство клеммной коробки представлено на рисунке 4.

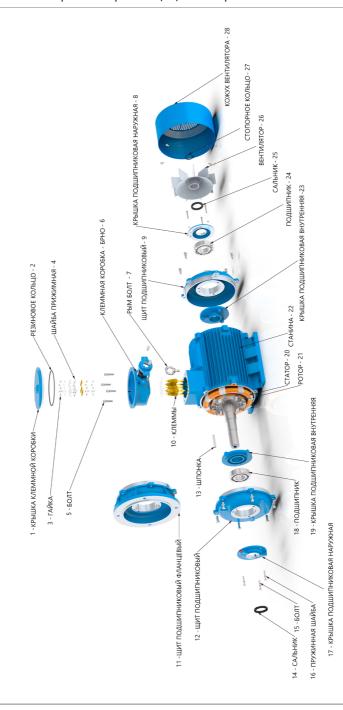
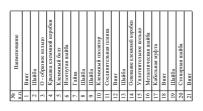



Рис. 3 - конструкция электродвигателя

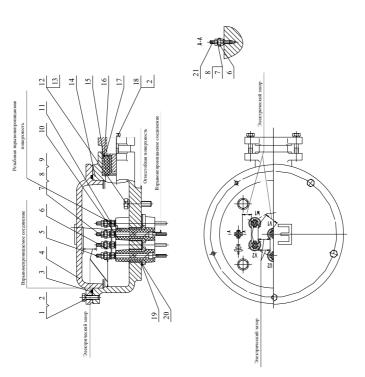


Рис. 4 - устройство клеммной коробки

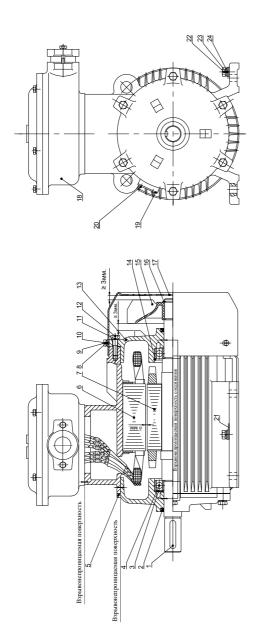
Конструкция клеммной коробки позволяет производить подключения к сети гибким, бронированным кабелем или отдельными проводами, прокладываемыми в водогазопроводных трубах и металлорукавах.

Двигатель рассчитан на работу при различных соединениях с приводным механизмом (муфты, ременные передачи и т.д.), либо напрямую (вентиляторы, насосы и т.д.).

Насадку полумуфты или шкива на вал двигателя производить в нагретом состоянии. При насадке механическим способом во избежание повреждения подшипников необходимо создать упор в конец вала со стороны, противоположной приводу, для этого необходимо снять кожух вентилятора.

6. Средства обеспечения взрывозащиты

Средства взрывозащиты электродвигателя представлены на рисунке 5.


Взрывозащищенность двигателя обеспечивается заключением электрических частей во взрывонепроницаемую оболочку по ГОСТ IEC 60079-1-2011, которая выдерживает давление взрыва внутри нее и исключает передачу взрыва в окружающую среду, а также соблюдением общих технических требований к взрывозащищенному электрооборудованию по ГОСТ 31610.0-2014 (IEC 60079-0:2011). Взрывонепроницаемость оболочки обеспечивается изготовлением из устойчивых к механическому и тепловому воздействию материалов и использованием щелевой взрывозащиты.

Взрывонепроницаемые плоские, цилиндрические и резьбовые соединения по ГОСТ 31610.0-2014 (IEC 60079-0:2011). Взрывонепроницаемость ввода кабеля обеспечивается с помощью эластичных уплотнений. При монтаже кабеля с помощью кабельного ввода (штуцера), нужно убедиться, что уплотнитель надёжно облегает кабель (кабель не должен свободно перемещаться по оси). В клеммной коробке должны быть установлены взрывозащитные заглушки, если кабельные вводы (штуцеры) не используются для подключения кабелей.

Степень защиты оболочки двигателя от внешних воздействий IP54-IP65 по ГОСТ 14254-2015, вентилятора со стороны входа воздуха IP20.

Фрикционная искробезопасность обеспечивается применением алюминиевых сплавов с содержанием магния менее 6%. Электростатическая искробезопасность обеспечивается отсутствием пластмассовых наружных частей оболочки.

Крепежные детали, а также контактные токоведущие и заземляющие зажимы предохранены от самораскручивания пружинными шайбами.

1 - штонка; 2 - сальник. 3 - пружанное кольцо; 4 - подциничик; 5 - передамії подшинимковыї шит; 6 - статор; 7 - ротор; 8 - шайба; 9 - винт; 10, 11 - шайба; 12 - болт;
13 - задвий подпинимовый шит; 14 - стоперное кольцо; 15 - кентистер; 16 - стоторное кольцо; 17 - стоторное кольцо; 17 - задвижа, 22 - болт; 23,24 - шиба. Рис. 5 - средства взрывозащиты электродвигателя.

Токоведущие части контактных соединений выполнены из латуни.

Заземляющие зажимы выполнены по ГОСТ 21130-75.

Максимальная температура наружной поверхности оболочки не превышает 135°C.

На корпусе двигателя имеется табличка (шильд), с номинальными параметрами двигателя, маркировкой степени защиты оболочки от внешних воздействий, маркировкой вида и уровня взрывозащиты и температуры окружающей среды.

Оболочка двигатель имеет высокую степень механической прочности по ГОСТ IEC 60079-1-2011.

7. Требования к монтажу электродвигателя

При монтаже двигателя необходимо обеспечить следующие условия:

- фундамент для установки двигателя должен быть ровным и не подверженным чрезмерной внешней вибрации и резонансам;
- фундамент и крепежные элементы двигателя должны быть стойкими к возможным усилиям при прямом пуске и при внезапном заклинивании исполнительного механизма;
- двигатель должен быть установлен таким образом, чтобы обеспечить приток к двигателю охлаждающего воздуха и отвод нагретого;
- двигатель должен быть установлен таким образом, чтобы он был доступен для осмотра и замены, а также для технического обслуживания на месте установки.

8. Подключение и монтаж электродвигателя

Все работы по транспортированию, хранению, подключению, вводу в эксплуатацию, обслуживанию и ремонту должны выполняться квалифицированными специалистами с соблюдением установленных норм (ПУЭ, ПТЭЭП, СНиП, Инструкции по охране труда при эксплуатации электроустановок) и требований настоящего «Руководства по эксплуатации». Несоблюдение требований «Руководства по эксплуатации», разборка двигателей без согласования с изготовителем, приводит к расторжению гарантии.

Любые самостоятельные доработки, изменение конструкции электродвигателя и взрывозащитных средств, строго запрещены!

Эксплуатация электродвигателей во взрывоопасной среде, должна производиться при полном соблюдении требований техники безопасности, оговоренных в гл. 7.3 ПУЭ, РД153-34.0.03.150-00 «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ РМ -016-2001», «Правила технической эксплуатации электроустановок потребителей».

К эксплуатации допускаются только исправные двигатели, без внешних повреждений, имеющие предупредительные обозначения, знаки вида и уровня взрывозащиты, заземляющие зажимы и крепежные детали.

При подготовке двигателя к работе и техническом обслуживание пользоваться только исправным инструментом.

При техническом обслуживании оберегать взрывозащитные поверхности сопряжения крышки и коробки выводов. На этих поверхностях не должно быть повреждений и царапин. Поверхности должны быть покрыты защитным слоем смазки Литол-24 (для климатического исполнения У) или ЦИАТИМ-221 (для климатического исполнения УХЛ и Т).

Обслуживание двигателя производить только после отключения его от сети и полной остановки вращающихся частей.

Монтаж, подключение и заземление двигателей должно производиться с соблюдением требований гл.7.3 ПУЭ, гл.3.4 «Правила технической эксплуатации электроустановок потребителей».

Перед монтажом:

- очистить двигатель от пыли;
- рабочий конец вала очистить от антикоррозионного покрытия (смазки) ветошью, смоченной в не горючем обезжиривателе;
- проверить вращение вала от руки (свободное вращение);
- проверить состояние взрывозащитных поверхностей крышки клеммной коробки и её корпуса, а так же наличие на них смазки;
- пророверить отсутствие щели между крышкой клеммной коробки и её корпусом;
- проверить надёжность фиксации кабеля и отсутсвие зазоров в кабельном вводе;
- проверить сопротивление изоляции обмотки мегаомметром на напряжение на 500В. Наименее допустимое сопротивление изоляции 1 МОм;
- двигатель, имеющий меньшее сопротивление, необходимо «просушить», при этом температура обмотки статора не должна превышать 100°С;

- измерить мультиметром (омметром) сопротивление цепи терморезисторов типа РТС (при наличии);
- установить и закрепить двигатель на месте эксплуатации;
- заземление и зануление двигателя согласно гл.7.3 ПУЭ;
- места контактов очистить от антикоррозийного покрытия;
- проверить надёжность соединения жил кабеля с клеммами электродвигателя:
- проверить соответствие линейного напряжения и частоты электрической сети, данным, указанным на паспортной табличке;
- правильность соединения обмоток двигателя в зависимости от напряжения питания;
- проверить правильность настройки защиты по перегрузке двигателя, которая настраивается по номинальному значению тока, указанному на паспортной табличке;
- состояние коробки выводов, плотность закрытия неиспользуемых отверстий для подвода кабеля и наличие уплотнений для обеспечения требуемой степени защиты;
- надежность присоединения подводящего кабеля и заземления.

Произвести пробный пуск двигателя на холостом ходу и с присоединенным исполнительным механизмом.

При сопряжении с исполнительным механизмом должны обеспечиваться следующие условия:

- собственная вибрация исполнительного механизма не должна превышать вибрацию двигателя;
- вал двигателя должен быть отцентрирован в аксиальном и радиальном направлениях с исполнительным механизмом, особенно в случаях прямого соединения;
- допустимая аксиальная несоосность не более 0,05 мм на диаметре условно измеренного круга 200 мм, радиальная несоосность не более 0,05 мм;
- детали исполнительного механизма, насаживаемые на вал двигателя, должны быть динамически отбалансированы с полушпонкой;
- масса деталей, установленных на вал электродвигателя, натяжение ремней при использовании клиноременной передачи, не должны создавать радиальные и осевые нагрузки больше величин, указанных в «Руководстве по эксплуатации» Приложение 1.

Во время монтажа, во избежании повреждения подшипников необходимо создать упор в конец вала со стороны, противоположной приводу.

9. Техническое обслуживание электродвигателя

Техническое обслуживание и текущий ремонт двигателей проводить в соответствии с ГОСТ 30852.18.2002.

К выполнению текущего ремонта допускается персонал, прошедший обучение и изучивший Руководство по эксплуатации, ГОСТ 31610.0-2014, РД153-34.0.03.150-00«Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ РМ-016-2001», «Правила технической эксплуатации электроустановок потребителей».

Технический осмотр проводить ежедневно.

При техническом осмотре следует проводить: визуальный осмотр электродвигателя и приводного механизма на отсутствие повреждений и надёжность креплений всех соединений.

Виды работ по техническому обслуживанию:

- очистка поверхностей двигателя от пыли и загрязнений;
- проверка заземления;
- проверка температуры подшипников;
- проверка состояния подшипников электродвигателя и уровень смазки; (для двигателей с открытыми подшипниками начиная от ВА 180, производить добавление смазки на работающем и прогретом электродвигателе (1 час работы при номинальной нагрузке, 2 часа при работе на холостом ходу), при этом необходимо извлечь пробку из сливного отверстия (открутить болт-заглушку), для выхода старой смазки. Полная замена смазки в подшипниках электродвигателя осуществляется во время текущего ремонта. Однако точные сроки зависят от условий и интенсивности эксплуатации оборудования, качества смазочного материала).
- измерение сопротивления изоляции обмоток относительно корпуса и между фазами (не менее 1 МОм);
- проверка состояния обмотки статора и цепи термодатчиков;
- замена консистентной смазки на взрывозащитных поверхностях;
- проверка уплотнительных элементов;
- проверка состояния контактных соединений;
- проверка болтовых соединений;
- проверка состояния лакокрасочных покрытий;

- крепежные детали должны быть завинчены на всю длину;
- затяжка крепежных болтов должна быть равномерной.

Текущее обслуживание проводить по мере необходимости, но не реже одного раза в месяц. График проведения технического осмотра и технического обслуживания разрабатывается с учетом специфики работы оборудования и протекания технологического процесса.

Неплановое техническое обслуживание.

В случае отклонений от нормальной работы электродвигателя и появлении шумов, повышенного нагрева, вибрации и т.п., выявленных при техническом осмотре, необходимо отключить электродвигатель и приостановить эксплуатацию до выяснения и устранения причины дефекта.

Техническое обслуживание подшипников (подшипниковых узлов).

Производится при плановом и неплановом техническом обслуживании.

В период эксплуатации необходимо:

- контролировать температуру подшипниковых узлов;
- контролировать шум в подшипниковых узлах;
- производить регулярное пополнение смазки;
- производить своевременную замену подшипников.

Закрытые подшипники поставляются со смазкой заложенной на весь срок эксплуатации подшипника. Пополнение и замена смазки не предусмотрены.

Открытые подшипники имеют первичное пополнение смазки на заводеизготовителе, перед вводом двигателя в эксплуатацию, рекомендуется произвести пополнение смазки.

Средний срок службы подшипников до замены около 20000 часов. Фактический срок службы подшипников зависит от многих факторов: условия смазывания, качества смазки, степени загрязнённости электродвигателя, наличия перекосов, условий окружающей среды, внешних вибраций и действующих радиальных и осевых нагрузок на вал двигателя от приводного механизма. По окончании срока службы подшипники необходимо заменить. Замену подшипника так же необходимо производить при появлении отклонений от нормальной работы - перегрев, шумы, стук, заедание и т.п.

Снятие подшипника производиться при помощи специального инструмента – съёмника. При замене запрещается наносить удары и создавать излишнее осевое давление.

При установке на вал открытых подшипников, их необходимо нагреть в минеральном масле, закрытые подшипники нагревать в воздушной среде, до температуры +90 °C.

Пополнение смазки в подшипниках открытого типа для электродвигателей ВА 180-280.

Пополнение смазки зависит от условий эксплуатации, частоты вращения, монтажного исполнения и температуры окружающей среды. Для пополнения смазки можно руководствоваться таблицей 2 (в часах). Смазку контролировать ежедневно. Пополнение смазки производить по мере необходимости, но не реже одного раза в месяц.

Внимание! Запрещается смешивание разных типов и марок смазки!

Для пополнения или замены смазки подшипников рекомендуется смазка:

Литол - 24 или импортный аналог (температура эксплуатации от -40 до +120 °C.) – для климатического исполнения У1-У4, Т2, УХЛ4.

Циатим - 221 или импортный аналог (температура эксплуатации от -60 до +150 °C.) – для климатического исполнения ХЛ1, ХЛ2, УХЛ1, УХЛ2.

Габарит	Периодичность пополнения смазкой открытых подшипников с помощью пресс-маслёнки, в часах									
	3000 об/м	3000 об/м 1500 об/м 1000 об/м 750 об/м 600 об/м								
180	4000	6800	8900	9400	9900	65				
200	3000	6400	8500	9000	9500	85				
225	2800	6000	8000	8500	9000	95				
250	2700	5300	7500	8000	8500	140				
280	2400	5000	7200	7800	8300	140				

Таблица 2

Коэффицие	нт изм	енени	я пери			ополне ющей			зависи	имости	от тем	иперат	уры
Темпера- тура окру-		Значения температуры окружающей среды											
жающей среды	60 °C	55°C	50°C	45°C	40°C	35°C	30°C	25°C	20°C	15°C	10°C	5°C	0°C
Коэффици- ент	0,16	0,16 0,2 0,25 0,32 0,4 0,52 0,64 0,8 1 1,32 1,6 2 2,5											

Коэффицие	Коэффициент изменения периодичности пополнения мазки в зависимости от температуры подшипника												
Температу-	рату- Значения температуры подшипника												
ра подшип- ника	120°C	115°C	110°C	105°C	100°C	95°C	90°C	85°C	80°C	75°C	70°C	65°C	60°C
Коэффици- ент	0,13	0,13										2	

^{*} Данная информация носит справочный характер. Подробности уточняйте у менеджеров

При отсутствии датчиков температуры подшипников, температура подшипника считается равной: температура поверхности щита в зоне подшипника, плюс 10 °С. Независимо от температуры окружающей среды в зоне подшипника со стороны привода может быть увеличенная температура в связи с ухудшением отвода тепла из-за установки в зоне приводного вала оградительных конструкций. Учитывать этот фактор и измерять температуру воздуха в зоне подшипника или температуру подшипника. В оградительных сооружениях сделать вентиляционные окна для отвода тепла.

При пополнении смазки необходимо добавлять примерно 20-30% от полного количества смазки в подшипниках. После двух пополнений смазку необходимо полностью заменить. Для пополнения или замены смазки подшипников рекомендуется использовать высокотемпературные синтетические смазки.

Полная замена смазки:

- необходимо снять крышку подшипника;
- при помощи ветоши смоченной в не горючем обезжиривателе, полностью удалить старую смазку с подшипника и крышки;
- плотно нанести смазку на сепаратор подшипника до уровня обоймы;
- примерно на 30% заполнить смазкой крышку подшипника ближе к краю.

При наличии тавотницы (маслёнки) и пробки для слива отработанной смазки в подшипниковом щите, для электродвигателей ВА 180-280, возможна замена смазки шприцеванием. Во избежание попадания смазки внутрь электродвигателя, пробки слива должны быть вывернуты. Шприцевание продолжают до тех пор, пока из отверстия для выхода смазки не пойдёт свежая смазка. Такой вид замены смазки производится на прогретом и работающем электродвигателе.

После окончания шприцевания, дать двигателю вращаться еще один час, для удаления лишней смазки. Затем закрыть сливную пробку.

Количество смазки для полной замены (приблизительно в граммах).

Тип, габарит	Со стороны приводного вала	С противоположной приводу
BA 180	150	150
BA 200	170	170
BA 225	200	200
BA 250	275	275
BA 280	275	275

Таблица 3

Замена уплотнения.

В крышке подшипникового щита по линии вала установлено уплотнение (уплотнительная манжета) для обеспечения защиты IP55-IP65. Периодичность замены 1500 ч.

Порядок разборки (сборки) двигателя для проведения текущего ремонта.

Разборка двигателя.

Для двигателей ВА 180-280 разборку следует проводить в следующей последовательности:

- открутить крышку клеммной коробки;
- отключить питающий кабель;
- извлечь шпонку с рабочего конца вала;
- отвернуть болты крепления кожуха вентилятора;
- снять кожух вентилятора;
- снять стопорное кольцо крепления вентилятора;
- при помощи механического съемника снять вентилятор;
- извлечь шпонку с вала в месте установки вентилятора;
- отвернуть болты крепления подшипниковых щитов;
- отвернуть болты крепления крышек подшипниковых щитов (если имеются);

- снять подшипниковый щит;
- извлечь уплотнительные манжеты;
- извлечь ротор с подшипниками, крышками подшипников (если имеются) и подшипниковым щитом;

Не допускается повреждение лобовых частей обмотки статора при извлечении ротора из статора.

Сборка двигателя.

Сборка двигателя производится в обратной последовательности.

- перед сборкой обязательно нанести консистентную смазку на взрывозащитные поверхности;
- при установке внутренних подшипниковых крышек (сборка подшипникового узла) необходимо использовать монтажные шпильки;
- необходимо заменить уплотнительные манжеты;
- после окончания сборки необходимо проверить сопротивление изоляции обмотки статора относительно корпуса и между фазами;
- проверить цепь термодатчиков;
- проверить вращение ротора «от руки» на отсутствие механических дефектов.

Меры по обеспечению взрывозащищённости двигателей при монтаже, ремонте и техническом обслуживании.

Необходимо тщательно оберегать от повреждений взрывозащитные поверхности. Диаметральные зазоры определяются как разность диаметров сопрягаемых деталей взрывонепроницаемой оболочки — причем, для вычислений необходимо брать минимальное значение сопрягаемой поверхности и максимальное значение большей сопрягаемой поверхности (между станиной или подшипниковым щитом).

Взрывозащитные поверхности должны быть смазаны смазкой, на них не должно быть царапин, вмятин, трещин, сколов. Следует проверить целостность изоляционного материала проходных зажимов на отсутствие на поверхности трещин, вмятин и сколов, а также надежность крепления проходных зажимов и крепления проводов к контактным клеммам.

Необходимо проверить состояние уплотнительных колец кабельных вводов.

Крепежные детали должны быть завинчены на всю длину. Затяжка крепежных болтов должна быть равномерной.

10. Возможные неисправности и методы устранения

Неисправность	Возможная причина неисправности	Методы устранения
Низкое сопротивление изоляции	Нарушение условий хранения, высокая влаж- ность	Просушить электродвигатель. Измерить сопротивление изоляции повторно
	Низкое напряжение в сети.	Проверить напряжение в сети и устранить неис-правность.
	Отсутствует напряжения в одной из фаз.	Найти и устранить неис- правность.
При запуске двигатель не набирает номинальную частоту вращения или		Произвести испытания обмотки. Двигатель непригоден к эксплуатации.
мощность.	Межвитковое замыкание в обмотке статора.	Обратиться в Сервисный центр для проведения ремонта.
	Нагрузка на двигатель превышает номинальное значение (перегрузка).	Снизить нагрузку или устранить неисправность в приводном механизме.
	Нагрузка на двигатель превышает номинальное	Снизить нагрузку.
Повышенный нагрев корпуса электродвигателя.	значение (перегрузка). Неисправность приводного механизма или нарушение центровки с ним.	Устранить неисправность в приводном механизме. Проверить центровку валов.
Повышенный нагрев	Дефект подшипников	Заменить подшипник.
в подшипниках	Избыток, недостаток, загрязнение смазк под- шипников	Заменить смазку.
Повышенная вибрация	Несоосность валов двигателя и приводного механизма	Произвести центровку валов.
	Дефект крепления дви- гателя	Устранить причину.
Повышенный механиче- ский шум	Дефект подшипников, механический дефект деталей двигателя.	Устранить причину.

11. Перечень критических отказов, приводящих к аварийным режимам работы

Возможные отказы	Действия, предотвращающие ошибки персонала
Неверное подключение	Производить подключение должен только обученный и аттестованный персонал согласно схемам подключения.
Работа с повышенной нагрузкой	Не допускать работу электродвигателя с токами, превышающими номинал.
Несоблюдение режимов работы	Не допускать частых включений и остановок электродвигателя.
Отсутствие центровки валов электродвигателя и рабочего механизма	Производить окончательную центровку агрегата перед запуском согласно инструкции на агрегат.

12. Транспортировка и хранение

Погрузка, транспортирование и разгрузка должны обеспечивать сохранность двигателя.

При погрузке и разгрузке двигателей использовать рым-болты.

ВНИМАНИЕ! Не допускается подъем электродвигателя за вал или вентиляционный узел. Нарушение данного указания неизбежно приведет к повреждению и выходу электродвигателя из строя. Для монтажа использовать только штатные места для грузоподъемных механизмов.

Транспортирование двигателей осуществляется в части воздействия климатических факторов по группе условий хранения 5 для двигателей климатического исполнения У и УХЛ, по группе б—для климатического исполнения по ГОСТ15150-69, по воздействиям механических факторов- группа С по ГОСТ 23216-78.

Двигатели допускается перевозить любым видом крытого транспорта и на любые расстояния.

Хранение

Двигатели до установки в эксплуатацию должны храниться законсервированными в закрытых помещениях или под навесом при температуре окружающего воздуха от+50 °C до -50 °C и относительной влажность 95% при +25°C.

Срок хранения 1 год.

После указанного срока двигатели, хранящиеся на складе, следует проверить и при необходимости переконсервировать.

Утилизация

Вышедшие из стоя двигатели не представляют опасности для здоровья человека и окружающей среды.

Материалы, из которых изготовлены детали двигателя (медь, латунь, алюминий, сталь, чугун), поддаются переработке и могут быть реализованы по усмотрению потребителя.

Детали двигателя, изготовленные с применением пластмассы, изоляционных материалов, могут быть переработаны.

13. Гарантийные обязательства

Изготовитель гарантирует соответствие двигателя требованиям Государственных Стандартов.

Изготовитель гарантирует безвозмездное устранение всех неисправностей, возникших по вине изготовителя, при условии соблюдения правил хранения, транспортирования, монтажа, обслуживания и эксплуатации, изложенных в «Руководстве по эксплуатации» и Паспорте электродвигателя.

Гарантия на двигатель серии ВА составляет 2 года с даты ввода в эксплуатации, но не более трёх лет с даты продажи при наработке не более 10000 часов.

Гарантия не распространяется на продукцию:

- повреждённую в результате несчастного случая, стихийного бедствия, транспортировки, форс-мажорных обстоятельств;
- имеющую любые повреждения, вызванные неправильным и неквалифицированным монтажом, подключением, эксплуатацией и техническим обслуживанием;

- поврежденную в результате нарушения условий эксплуатации;
- несанкционированная разборка, ремонт, модернизация в ремонтных организациях, не имеющих статуса Сервисного Центра.

Гражданский кодекс РФ Статья 471. Исчисление гарантийного срока:

«Гарантийный срок начинает действовать с момента передачи товара покупателю, если иное не предусмотрено договором купли-продажи».

Возмещение затрат потребителю, связанных с простоем оборудования при гарантийном обслуживании продукции, компания не производит.

Возмещение затрат по техническому обслуживанию продукции, в случае признания претензии необоснованной (при исправной продукции или неисправной по вине потребителя), производится потребителем, по действующему прейскуранту Сервисного Центра.

Приложение 1. Радиальные и осевые нагрузки

Осевая и радиальная нагрузка на подшипники от приводного механизма не должна превышать значения, указанные в таблицах.

Превышение указанных ниже значений приводит к сокращению срока службы подшипников, выходу из строя электродвигателя и является нарушением правил эксплуатации.

	Максимально допустимая радиальная нагрузка Fr, H											
	3	000 об/ми	1H	15	500 об/мі	1H	1	000 об/мі	1H	7	750 об/ми	н
Габарит				To	чка прил	ожения р	адиальн	ой нагруз	ки			
электро- двигателя				Конст	руктивно	е исполн	ение ІМ:	1001, 200	1, 3001			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X = 0	X = 0,5	X = 1	X = 0	X = 0,5	X = 1	X = 0	X = 0,5	X = 1	X = 0	X = 0,5	X = 1
80	550	530	420	750	710	570	860	820	640	950	800	680
90	610	580	520	840	760	700	980	860	770	1100	1030	930
100	910	820	740	1080	990	880	1010	950	790	1350	1310	1060
112	1060	980	870	1270	1150	970	1720	1590	1350	1630	1480	1290
132	1530	1340	1160	1890	1650	1420	2120	1860	1590	2430	2070	1720
160	2310	1980	1640	3060	2720	2270	3420	2940	2520	3800	3220	2770
180	2920	2550	2240	3970	3460	3050	4590	3960	3500	5090	4470	3860
200	3420	2960	2700	4460	2900	3360	5130	4530	3900	5660	4930	4220
225	3880	3440	3080	5160	4480	3910	5900	5150	4360	6440	5560	4730
250	4230	3960	3580	6260	5510	4810	7260	6470	5640	7820	6970	6160
280	4700	4110	3730	6520	5570	4840	7380	6870	5970	8080	7665	6410

Максимально допустимые значения нагрузок при ином монтажном исполнении и на габариты не включенные в таблицу, предоставляются по запросу.

Точки приложения радиальной нагрузки Х = 0 - у заплечика вала; Х = 0,5 - середина вала; Х = 1 - конец вала.

Таблица «Максимально допустимая осевая нагрузка»

		Максим	иально допусти	мая осевая наг	рузка FA, Н					
		Конструктивное исполнение IM: 1001, 2001, 3001								
			Напра	вление действ	ия осевой нагру	зки Fa				
Габарит двигателя	Число полюсов	F _A ➡E		Ę		F _A				
		При F _r = 0	При F, max	При F, = 0	При F _, max	При F _r = 0	При F _r max			
	2	380	215	430	340	390	150			
80 90	4	440	265	570	400	520	150			
100	6	480	360	690	450	630	190			
100	8	560	455	780	620	720	270			
	2	850	590	930	730	820	310			
112	4	1050	760	1250	950	1140	370			
112	6	1350	950	1520	1200	1370	480			
	8	1550	1150	1720	1400	1570	690			
	2	1450	835	1550	1300	1400	380			
132	4	1750	1015	2050	1600	1850	470			
132	6	2200	1275	2450	1850	2200	540			
	8	2550	1435	2800	2150	2550	670			

Максимально допустимые значения нагрузок при ином монтажном исполнении и на габариты не включенные в таблицу, предоставляются по запросу.

Значение максимальной радиальной нагрузки Fr max - для точки приложения X = 0,5 - середина вала.

^{*} Данная информация носит справочный характер. Подробности уточняйте у менеджеров

Максимально допустимая радиальная нагрузка FA, H									
	Конструктивные исполнения IM: 1001, 2001, 3001								
		Направление действ	ия осевой нагрузки Ғ						
Габарит двигателя	Число полюсов	- <u>F</u>							
		При F _r = 0	При F _, max						
	2	1640	660						
160	4	2200	1000						
160	6	2060	1080						
	8	2100	1200						
	2	2030	780						
100	4	2480	1080						
180	6	2990	1300						
	8	3500	1450						
	2	1340	940						
000	4	1670	1070						
200	6	2080	1360						
	8	2320	1640						
	2	1500	1020						
225	4	1860	1220						
225	6	2240	1370						
	8	2530	1600						
	2	3210	2760						
050	4	4280	3590						
250	6	5000	4180						
	8	6530	5550						
	2	3050	2550						
	4	3850	3150						
280	6	4600	3750						
	8	4900	4000						
	10	6050	4900						

Максимально допустимые значения нагрузок при ином монтажном исполнении и на габариты не включенные в таблицу, предоставляются по запросу.

Значение максимальной радиальной нагрузки Fr max – в таблице для точки приложения X = 0,5 – середина вала.

Центральный офис компании

Нижний Новгород

603035, г. Нижний Новгород, ул. Чаадаева, 2Г +7 (831) 275-96-39, +7 (831) 218-00-72 practik-nn@pr52.ru

8 (800) 234-01-01

Бесплатный звонок по России

Сервисный центр

603035, г. Нижний Новгород, ул. Чаадаева, 1У1 (проезд с ул. Рябцева) +7 (831) 275-99-73, +7 987-390-01-79 service@pr52.ru

Филиалы компании

Ижевск

426028, г. Ижевск, ул. Пойма, 17 +7 (3412) 91-51-47, 91-51-48, 91-49-77, 91-49-98 practik-izhevsk@pr52.ru

Воронеж

394026, г. Воронеж, ул. Антонова-Овсеенко, 7 +7 (473) 210-61-33 practik-voronezh@pr52.ru

Казань

420087, г. Казань, ул. Бухарская, 4В +7 (843) 528-28-43 practik-kazan@pr52.ru

Киров

610998, г. Киров, ул. Щорса, 105 (Складской комплекс МИР, Терминал Д, заезд с ул. Солнечный проезд) +7 (8332) 76-00-22 (многоканальный) +7 912 364-64-00 practik-kirov@pr52.ru

Краснодар

350072, г. Краснодар, ул. Тополиная, 14/1

+7 (861) 217-74-49 practik-kr@pr52.ru

Москва

115184, г. Москва, ул. Большая Татарская, 35, стр. 3, оф. 703 +7 (499) 649-79-25 practik-msk@pr52.ru

Новосибирск

630108, г. Новосибирск, ул. Станционная, 38ж +7 (383) 347-85-35, +7 983 120-48-01 practik-nsk@pr52.ru

Пенза

440015, г. Пенза, ул. Аустрина, 149 А +7 (8412) 90-87-08, 677-379, 677-525, 677-347 practik-penza@pr52.ru

Пермь

614990, г. Пермь, ул. Героев Хасана, 68, к. 5 +7 902 793-29-25, +7 (342) 240-04-88, 240-04-94, 240-04-98, 240-99-88 <u>practik-perm@pr52.ru</u>

Самара

443070, г. Самара, ул. Загородная, 3 +7 (846) 279-03-80, 279-03-81, 279-03-84, +7 910 109-15-44, +7 910 109-16-27 practik-samara@pr52.ru

Санкт-Петербург

192289, г. Санкт-Петербург, пр. Девятого Января, 9А, корп. 1 +7 (812) 642-42-19, +7 (812) 415-92-49 practik-spb@pr52.ru

Саратов

410080, г. Саратов, пр. Строителей, 39В +7 (8452) 74-81-90, 74-81-91, +7 937 638-36-57 practik-saratov@pr52.ru

Уфа

450095, г. Уфа, ул. Центральная, 19 +7 (347) 293-42-84, 293-42-77, +7 910 109-14-85 practik-ufa@pr52.ru

Ульяновск

432026, г. Ульяновск, Московское шоссе, 72 +7 (8422) 48-20-31, 45-44-14, +7 917 053-77-13 practik-ul@pr52.ru

Ярославль

150044, г. Ярославль, ул. Базовая, 2 +7 (4852) 58-66-01, 58-66-02, 58-66-03, +7 910 816-39-76 practik-yar@pr52.ru

Ростов-на-Дону

344091, г. Ростов-на-Дону, ул. Доватора, 154/5, 2 этаж (база ДГС) +7 (863) 285-58-82 practik-rostov@pr52.ru

Екатеринбург

620073, г. Екатеринбург, ул. Крестинского, 46, корп. А, оф. 305 +7 (343) 345-04-51 practik-ekb@pr52.ru

Филиалы СНГ

Астана, Республика Казахстан

г. Астана, р-он Сарыарка, ул. Бейбитшілік, 14, оф. 1209 +7 (717) 272-53-67 practik-khn@pr52.kz

Алматы, Республика Казахстан

г. Алматы, проспект Райымбека, 169, 2 этаж.

+7 (727) 339-54-58 practik-khn@pr52.kz

Минск, Республика Беларусь

г. Минск, ул. Инженерная, 18/1, к. 11 +375 (017) 270-95-42, +375 (017) 270-95-43 practik-by@pr52.by

г.п. Логишин,

Республика Беларусь

Брестская область, Пинский район, г.п. Логишин, ул. Томилова, 1 +375 (017) 270-95-42,

+375 (017) 270-95-43 practik-by@pr52.by

EHC

603035, г. Нижний Новгород, ул. Чаадаева, 2Г +7 (831) 275-96-39, +7 (831) 218-00-72 practik-nn@pr52.ru Редакция от 02.06.2022

29.05.2024